INTRODUCTION

The following list contains measures to control sources of stormwater pollutants associated with the post-construction phase of new development and redevelopment projects. Each identified source of pollutants may have one or more appropriate control measures. The model list is intended to be a menu of measures from which Co-permittees may select appropriate measures to apply to specific projects. Co-permittees do not have to use the exact wording of a site design or source control measure as long as the intent of the measure (i.e., to keep pollutants out of stormwater, groundwater, creeks and the Bay) is preserved. Phrases in brackets represent alternative or optional wording.

SITE DESIGN

General

1. The project will incorporate site design measures for reducing water quality impacts of the project, in compliance with the [City/Town’s] NPDES stormwater permit Provision C.3. requirements. Guidance on approved site design measures is available from the [Public Works/Planning Department]. Final approval for site design measures must be obtained from the [Planning/Community Development/Public Works Department].

Minimize Land Disturbance

1. Significant natural features and resources on site such as undisturbed forest area, setbacks, easements, trees, steep slopes, erosive soils, wetlands or riparian areas shall be identified within the area to be developed and protected during construction and during future use of the site.
2. Site layout shall conform to natural landforms on-site. Buildings shall be located to utilize natural drainage systems as much as possible and avoid unnecessary disturbance of vegetation and soils. Development on unstable or easily erodible soils shall be avoided due to their greater erosion potential.

Minimize Impervious Surfaces

1. Directly connected impervious surfaces shall be minimized. Runoff from impervious areas shall be channeled to pervious areas (e.g., park strips, vegetated planters) where possible prior to discharge to the storm drain.
2. Site permeability shall be maximized by clustering buildings, reducing building footprints, minimizing impervious surfaces, and paving with permeable materials where feasible.
3. The project shall cluster structures and incorporate smaller lot sizes where feasible to reduce overall impervious surface coverage and provide more undisturbed open space, for protection of water resources.

Preserve Open Space

1. The amount of open space on the site shall be maximized and the open space area maintained in a natural manner.
2. Undisturbed natural areas such as forested conservation areas and stream buffers shall be utilized to treat and control stormwater runoff from other areas of the site with proper design.
Reduce Effects of Hydromodification

1. The project shall utilize infiltration measures to reduce stormwater discharge to the greatest extent feasible.

2. The applicant shall minimize increases in stormwater flow and volume resulting from the development project to protect creeks and waterways from flooding and erosion impacts.

Street Design

1. Where density, topography, soils, slope and safety issues permit, vegetated open channels or other landscape measures shall be used in the street right of way to convey and treat stormwater runoff from roadways.

2. Sidewalks shall be sloped to drain to adjacent vegetated park strips.

Parking Lots

1. Where feasible, parking lots and other impervious areas shall be designed to drain stormwater runoff to vegetated drainage swales, filter strips, and/or other treatment devices that can be integrated into required landscaping areas and traffic islands prior to discharge into storm drain systems.

2. The amount of impervious area associated with parking lots shall be minimized by providing compact car spaces, reducing stall dimensions, incorporating efficient parking lanes, and using permeable pavement in overflow parking areas where feasible.

3. Curb cuts (one every 10 feet), tire stops, or other means shall be provided to protect landscaped areas and allow maximum flow of stormwater into landscaped areas.

4. The use of permeable paving for parking and driveway surfaces is encouraged, to reduce runoff from the site. Such paving should meet fire department requirements and be structurally appropriate for the location.

Landscaping as a Stormwater Drainage/Treatment Feature

1. Projects shall be designed to direct stormwater runoff into landscaping or natural vegetation where feasible.

2. Large landscaped areas shall be designed to collect and infiltrate stormwater where feasible. Overflow drains shall be placed so that landscaped areas can store runoff and drain at capacity. Such collection areas shall be designed and maintained to meet vector control requirements.

3. Where possible, runoff from impervious areas such as rooftops, roadways and parking lots shall be directed to pervious areas, open channels or vegetated areas prior to discharge to the storm drain system.

Riparian Areas

1. Naturally vegetated buffers shall be delineated and preserved along perennial streams, rivers, lakes and wetlands.
SOURCE CONTROLS

Structural Control Measures

A. Illegal Dumping to Storm Drain Inlets and Waterways

1) On-site storm drain inlets shall be clearly marked with the words “No Dumping! Flows to Bay,” or equivalent, using methods approved by the [Co-permittee].

2) It is unlawful to discharge any wastewater into storm drains, gutters, creeks, or the San Francisco Bay. Unlawful discharges to storm drains include, but are not limited to, discharges from toilets; sinks; industrial processes; cooling systems; boilers; fabric cleaning; equipment cleaning; or vehicle cleaning.

3) It is unlawful to cause hazardous domestic waste materials to be deposited in such a manner or location as to constitute a threatened discharge into storm drains, gutters, creeks or San Francisco Bay.

B. Interior Floor Drains

1) Interior floor drains shall be plumbed to the sanitary sewer system and shall not be connected to storm drains.

C. Parking Lots

1) Interior level parking garage floor drains shall be connected to [a water treatment device approved by the (Co-permittee) prior to discharging to] the sanitary sewer system. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

D. Pesticide/Fertilizer Application

1) Landscaping shall be designed to minimize irrigation and runoff, promote surface infiltration where appropriate, and minimize the use of fertilizers and pesticides that can contribute to stormwater pollution.

2) Structures shall be designed to discourage the occurrence and entry of pests into buildings, thus minimizing the need for pesticides. For example, dumpster areas should be located away from occupied buildings, and building foundation vents shall be covered with screens.

3) Additional requirements are covered in the “Model Conditions of Approval for Pest Resistant Landscaping” (August 19, 2002).

E. Pool, Spa, and Fountain Discharges

1) Pool (including swimming pools, hot tubs, spas and fountains) discharge drains shall not be connected directly to the storm drain or sanitary sewer system. [Exception: Public pool discharge drains must be connected to the sanitary sewer system, per County Department of Environmental Health requirements.]

2) When draining is necessary, a hose or other temporary system shall be directed into a sanitary sewer clean out. The clean out shall be installed in a readily accessible area [example: within 10 feet of the pool]. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.
F. Food Service Equipment Cleaning

1) Food service facilities (including restaurants and grocery stores) shall have a sink or other area for cleaning floor mats, containers, and equipment, that is connected to a grease interceptor prior to discharging to the sanitary sewer system. The cleaning area shall be large enough to clean the largest mat or piece of equipment to be cleaned. The cleaning area shall be indoors or in a covered area outdoors; both areas must be plumbed to the sanitary sewer.

G. Refuse Areas

1) New buildings [such as food service facilities and/or multi-family residential complexes or subdivisions] shall provide a covered or enclosed area for dumpsters and recycling containers. The area shall be designed to prevent water run-on to the area and runoff from the area.

2) Areas around trash enclosures, recycling areas, and/or food compactor enclosures shall not discharge to the storm drain system. Any drains installed in or beneath dumpsters, compactors, and tallow bin areas serving food service facilities shall be connected [to a grease removal device prior to discharging] to the sanitary sewer. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

H. Outdoor Process Activities/Equipment

1) Process activities shall be performed either indoors or outdoors under cover. If performed outdoors, the area shall be designed to prevent run-on to and runoff from the site.

2) Process equipment areas shall drain to the sanitary sewer system. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

I. Outdoor Equipment/Materials Storage

1) All outdoor equipment and materials storage areas shall be covered [and bermed], or shall be designed to limit the potential for runoff to contact pollutants [or a storm drain inlet valves shall be provided on exterior drains in the area].

2) Storage areas containing non-hazardous liquids shall be covered by a roof and/or drain to the sanitary sewer system, and be contained by berms, dikes, liners or vaults. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

3) All hazardous materials and wastes, as defined [or regulated] by [cite ordinance or regulation], on the site must be used and stored in compliance with the [Co-permittee’s] Hazardous Materials Ordinance and Hazardous Materials Management Plan for the site approved by the [Co-permittee department].

J. Vehicle/Equipment Cleaning

1) Wastewater from vehicle and equipment washing operations shall not be discharged to the storm drain system. [Optional, e.g. for car dealerships: If water only (without soap or other cleaning agent) is used for rinsing of vehicle exterior surfaces for appearance purposes, the runoff may be discharged to the storm drain system.]

1 Examples of businesses that may have outdoor process activities and equipment include machine shops and auto repair shops, and industries that have pretreatment facilities.
2) Commercial/industrial facilities having vehicle/equipment cleaning needs [and new residential complexes of 25 units or greater] shall either provide a covered, bermed area for washing activities or discourage vehicle/equipment washing by removing hose bibs and installing signs prohibiting such uses. Vehicle/equipment washing areas shall be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

3) Commercial car wash facilities shall be designed and operated such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility shall discharge to the sanitary sewer [or a wastewater reclamation system shall be installed]. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

K. Vehicle/Equipment Repair and Maintenance

1) Vehicle/equipment repair and maintenance shall be performed in a designated area indoors, or if such services must be performed outdoors, in an area designed to prevent the run-on and runoff of stormwater.

2) Secondary containment shall be provided for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid-containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains shall not be installed within the secondary containment areas.

3) Vehicle service facilities shall not contain floor drains unless the floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer, for which an industrial waste discharge permit has been obtained. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

4) Tanks, containers or sinks used for parts cleaning or rinsing shall not be connected to the storm drain system. Tanks, containers or sinks used for such purposes may only be connected to the sanitary sewer system if allowed by an industrial waste discharge permit. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

L. Fuel Dispensing Areas

1) Fueling areas shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are: a) graded at the minimum slope necessary to prevent ponding; and b) separated from the rest of the site by a grade break that prevents run-on of stormwater to the maximum extent practicable.

2) Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover’s minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area, as defined below.] The canopy [or cover] shall not drain onto the fueling area.

2 The fueling area shall be defined as the area extending a minimum of 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater.
M. **Loading Docks**

1) Loading docks shall be covered and/or graded to minimize run-on to and runoff from the loading area. Roof downspouts shall be positioned to direct stormwater away from the loading area. Water from loading dock areas shall be drained to the sanitary sewer, or diverted and collected for ultimate discharge to the sanitary sewer. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

2) Loading dock areas draining directly to the sanitary sewer shall be equipped with a spill control valve or equivalent device, which shall be kept closed during periods of operation.

3) Door skirts between the trailers and the building shall be installed to prevent exposure of loading activities to rain.

N. **Fire Sprinkler Test Water**

1) Sanitary sewer connections shall be provided to drain fire sprinkler test water.

O. **Miscellaneous Drain or Wash Water**

1) Boiler drain lines shall be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system.

2) [Air compressor or air conditioner] condensate drain lines may not discharge to the storm drain system.

3) Roof drains shall discharge and drain away from the building foundation to an unpaved area wherever possible.

4) Roof top equipment shall drain to the sanitary sewer. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

Operational BMPs

A. **Paved Sidewalks and Parking Lots**

2) Sidewalks and parking lots shall be swept regularly to prevent the accumulation of litter and debris. Debris resulting from pressure washing shall be trapped and collected to prevent entry into the storm drain system. Washwater containing any cleaning agent or degreaser shall be collected and discharged to the sanitary sewer and shall not be discharged to a storm drain. The applicant shall contact the local permitting authority and/or sanitary district with jurisdiction for specific connection and discharge requirements.

B. **Private Streets**

1) Owner of private streets and storm drains shall prepare and implement a plan for street sweeping of paved private roads and cleaning of all storm drain inlets.

C. **Vehicle/Equipment Repair and Maintenance**

5) No person shall dispose of, nor permit the disposal, directly or indirectly, of vehicle fluids, hazardous materials, or rinsewater from parts cleaning operations into storm drains.

6) No vehicle fluid removal shall be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any...
spilled fluid will be in an area of secondary containment. Leaking vehicle fluids shall be contained or drained from the vehicle immediately.

7) No person shall leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment.

D. Fueling Areas

The property owner shall dry sweep the fueling area routinely.

PESTICIDE REDUCTION

If a landscaping plan is required as part of a development project application, the plan shall meet the following conditions related to reduction of pesticide use on the project site:

1. Landscaping shall be designed with efficient irrigation to reduce runoff, promote surface infiltration, and minimize the use of fertilizers and pesticides that can contribute to water pollution.

2. Where feasible, landscaping shall be designed and operated to treat stormwater runoff by incorporating elements that collect, detain, and infiltrate runoff. (Attachment A, “Examples of Landscaping Element for Stormwater Treatment” shall be used as a reference.) In areas that provide detention of water, plants that are tolerant of saturated soil conditions and prolonged exposure to water shall be specified.

3. Plant materials selected shall be appropriate to site specific characteristics such as soil type, topography, climate, amount and timing of sunlight, prevailing winds, rainfall, air movement, patterns of land use, ecological consistency and plant interactions to ensure successful establishment.

4. Existing native trees, shrubs, and ground cover shall be retained and incorporated into the landscape plan to the maximum extent possible.

5. Proper maintenance of landscaping, with minimal pesticide use, shall be the responsibility of the property owner. (“Fact Sheet on Landscape Maintenance Techniques for Pest Reduction” may be used as an example education piece for property owners.)

REFERENCES

Site Design

City of Palo Alto, Municipal Code Title 18.12.050 Site Development Regulations.

III. Selecting BMPs

Source Control
BASMAA “Start at the Source Tools Handbook” (June 2000);
Alameda Countywide Clean Water Program (ACCWP) Model Conditions of Approval (1999);
City of Palo Alto Municipal Code Chapter 16.09, and revisions to Chapter 16.09 approved July 22, 2002;
City of San Jose standard conditions (need reference);
City of Cupertino, Guidance for Selecting BMPs for Development Projects;
Example source control measures provided by Regional Board staff in Provision C.3.k. of the SCVURPPP NPDES Permit (October 2001).

Pesticide Reduction
City of Concord, North Carolina, Unified Development Ordinance, “Article 7, Landscaping and Buffering Standards” http://www.ci.concord.nc.us/planning/zoning/acrobats/Article%207.pdf,
King County Local Hazardous Waste Management Program, Tri-County Integrated Pest and Vegetation Management: Guidelines.
LANDSCAPING ELEMENTS FOR STORMWATER TREATMENT

Landscaped areas in development sites present valuable opportunities to treat and store runoff. Through a variety of strategies, the volume of runoff and concentration of pollutants found in the runoff from development sites can be minimized, resulting in improved quality of waters discharged into local creeks and the Bay.

A particular concern with landscaped areas is the use of pesticide products for landscape maintenance. Alternative design and maintenance techniques can reduce the potential for pesticides to run off the landscape; reduce the amount of chemicals necessary to ensure healthy plants or eliminate the need for pesticide usage; and decrease the need for landscape maintenance by minimizing pest infestations and creating low maintenance environments. Using these techniques decreases the amount of pesticides entering receiving waters.

The planning and design phases of development present ideal opportunities for inclusion of stormwater treatment into landscape design. It is important to make such considerations early in the development process to ensure effective incorporation and plan for maintenance measures. Described below are suggestions for various stages in the development process. These methods are enumerated in more detail in BASMAA’s Start at the Source Design Guidance Manual for Stormwater Quality Protection (1999).

PLANNING

Identify sensitive areas to be protected and preserved during construction, such as existing trees, steep slopes, erosive soils, riparian areas or wetlands when planning for site development (Start at the Source, p. 28).

DESIGN

Utilize drainage as a design element in site plan development. Whenever possible, natural drainage systems should guide the pattern of development and influence site layout of pathways, parks and open areas, and building structures. Integrating naturally occurring drainage systems into site design will yield aesthetic and functional benefits (Start at the Source, p. 32). Suggested methods include:

A. Maximizing Permeability

1. Minimizing Directly Connected Impervious Surface Area

 Impervious surfaces that are directly connected to the stormwater conveyance system do not take advantage of the potential benefits offered by the infiltration of runoff and filtration of pollutants by plant and soil materials. Direct runoff from pathways to landscaped areas. (Start at the Source, p. 29)

2. Permeable Pavement

 When development requires the installment of hard, flat surfaces, porous pavement may be utilized instead of impervious surfaces. Permeable pavement minimizes runoff by allowing the infiltration of water through a load bearing surface where it is stored in an underground...
reservoir. The materials listed below may be used as porous pavement. (*Start at the Source*, p. 47)

a. Pervious concrete
b. Porous asphalt
c. Turf block
d. Brick
e. Natural stone
f. Concrete unit paver
g. Crushed aggregate (gravel)
h. Cobbles
i. Wood mulch (for light pedestrian use)

B. Utilizing Treatment Opportunities (*Start at the Source*, p. 70-73)

1. Landscape Grading

Landscapes that have a slight concave slope have the ability to hold water. This technique is more valuable in permeable soils but can be used as retention/detention basins with proper outlets or underdrains in heavy clay soils.

2. Grass Swales

Grass or vegetation lined swales (channels) can be used as low maintenance linear biofilters along the perimeters of large expanses of pavement. (e.g., parking lots)

3. Multiple Small Basins

Small vegetated retention basins (bioretention areas) can be used to create opportunities for storage, infiltration, and treatment in a landscape. Small basins may be installed in the parkway planting strip, along shoulders of streets, under wood decks, in parking lot planters, and at roof downspouts.

4. Extended Detention Basins

Extended detention basins can be incorporated into landscape design to reduce the volume and velocity of runoff from the site. Detention basins are appropriate landscape elements for developments greater than ten acres and can simultaneously serve as flood control basins, parks, playing fields, tennis courts, open space and overflow parking lots.

5. Wet Ponds

Permanent pools of water that detain and treat stormwater runoff, wet ponds can be incorporated into landscape design to enhance the drainage functions and aesthetic quality of the site. Wet ponds are often surrounded by a fringe wetland to increase stormwater treatment potential and can also be combined with recreational areas (usually appropriate for storm water drainage in a development or project with a drainage area greater than 2 acres but more cost effective for drainage areas greater than 10 acres).

6. Increase the Treatment Potential of the Landscape

The beneficial stormwater detention and treatment elements of a landscape can be optimized by:

a. Planting deeply rooted plants that help build soil porosity;

b. Allowing exposed leaf surface to collect rainwater before it filters into the soil in order to increase overall detention potential; and

c. Selecting plants appropriate for the site climate, exposure, and amount of watering or inundation by water.